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Abstract

The paper investigates the equations for geodesics, null geodesics, and spatial geodesics in
rotating systems. Geodesics and null geodesics have, as usual, been interpreted as the paths
of free particles and of light rays, respectively. Spatial geodesics are given a firm interpreta-
tion as the shortest paths between points within the rotating system, where the path
iength i8 measured by an observer in the rotating system who moves along the spatial
geodesic, The paper shows that equations for geodesics in rotating systems may be derived
by the traditional method, i.e., from the flat-space metric of general relativity, or by means
of the instantaneous Lorentz frames approach. This supports the use of instantaneous
Lorentz frames as a valid method for the analysis of events in rotating systems.

1. Introduction

In this paper we consider the derivation of equations that describe geodesics
in rotating systems. Thes¢ “geodesics™ have been subdivided into three types:
geodesics, null geodesics, and spatial geodesics. These three terms are inter-
preted as the path of a test particle, the path of a ray of light, and the shortest
possible distance between any two points, respectively. The above definitions
for geodesics and null geodesics are common in relativity theory and are accepted
as fundamental assumptions. However, the identification of a spatial geodesic
as the shortest possible distance between two points requires additional explan-
ation. In a rotating system, as indeed in any system, there are various ways of
measuring the distance between two points; one can use radar measurement,
triangulation measurement, contiguous measurement using short measuring
rods, and a variety of other techniques, However, if one has to actually move
from one point to another there is only one path between the two points that
will be shorter than any other, when measured by the observer who actually
makes the journey. It is in this context that we shall discuss spatial geodesics.

The two main techniques for the analysis of rotating systems are the metric
technique, as is common in general relativity, and the technique of instantaneous
Lorentz frames. Ashworth and Jennison (1976) have already produced a
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846 ASHWORTH AND DAVIES

restricted discussion of the applications of instantaneous Lorentz frames to
rotating systems. It is one of the objectives of the present paper to show that
the two seemingly unrelated approaches produce identical results.

In our discussion of rotating systems we introduce two systems of coordinates.
One of these systems uses the frame S, , which is related to the laboratory
frame, S, by the Galilean rotational transformation, and the other system uses
the frame S, which differs from S, only in angular measure. We show that
Sy and S, are equally valid for describing a rotating system and that the only
difference between the two frames of reference is in the interpretation of
measurements that have been made within the rotating system.

2. The Metric Approach

In this section we consider the derivation of the geodesic equations from
the particular metric obtained when the Galilean rotational transformation is
applied to the flat space-time of the Minkowski metric. The resulting metric
corresponds, in particular, to a description of the rotating system made by an
observer at the center of rotation of the system who is inr synchronous
rotation with the system. A restricted discussion of the interpretation, through
the metric, of observations made by an observer who is rotating with the
system has been made by Davies (1976).

The cylindrical form of the Minkowski metric in the laboratory system
S(r,8,z,£)is

ds?=dr® +?de* +dz* - c*dr” @D
and the Galilean rotational transformation to the frame S,(r,, 05, 25, £5) is

given by
F=ry

6’:'62'!'(401"2
Z=Zs
f=f2

Q2

whence we obtain in the frame S, the metric
ds® =dry? +7,%d0,% +dz,? + 20r,%d0,dt, — (¢ — Wi 2)dty?  (2.3)

The equations applicable to both geodesics and null geodesics are obtained
from equation (2.3} in the usual manner and are of the form

d . .. i
o (203} = 2r20,% + 4eorylyt, + 2w, 152 24
d 24 2: 1 =
ﬁ {2}’2 92 + 2(07'2 tz} =0 (2.5)

d .
{22} =0 (2.6)
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and

d , . d | o .
y {2ar%05 —2(c? — W'Dy} =0 = Iy {55 (gm,x”x”)}

2
_d ] ofas @7
d\ | 915\ dX
in which A is a parameter that varies along the curve and the dots denote
differentiation with respect to A.

Integrating equations (2.5)-(2.7) and denoting the constants of integration
by 24, 2B, and 2D, respectively, gives

tr=(Aw - D)/c? (2.8)
0,=(4c? — 40?1, + wry*D)jry%c? (2.9)
and
29=B (2.10)
Equation (2.3) can also be written in the form
ds\?
(dK) =iy #1207 + 257 4+ 20r,20,, — (A — WP Hi? (211)

Let us now confine our attention to the plane z, = 0.

2.1 Geodesics. The geodesics of the metric given in equation (2.3) are
fully described by equations (2.8)~(2.11) together with the condition
dsfd\ = 1 thus giving

do 2 as [ )
== t 2.12

dr, ["2(’22 — @)% u(ry? - a?)? 212)
in which u is the velocity of a particle as measured in the laboratory frame
S(r, 8, z, t) such that

L= (1 + 621122)1/2

2.13
7 @13)
Also, r; = a, at the point of the closest approach of the geodesic to the origin,
i.e., at the point where dr,/d6, = 0.

If u is independent of 7, then equation (2.12) may be integrated to give
0, =tcos Hay /ry) £ (W)(rs? — aH)V? +K, (2.19

in which X; is a constant of integration, such that K; =8, when r, =a,, and
in which any combination of the signs is permissible.

Equation (2.14) is the first equation in Table 1 and is the equation of a
geodesic, i.e., the path of a free particle, in the frame S,, as calculated from the
metric of equation (2.3), assuming that the particle traveled through the laboratory
frame with a constant velocity u.
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2.2. Null Geodesics. The equation of a null geodesic, found by solving
equations {(2.8)~(2.11) and setting ds/d A =0, is given by

05 =*cos gy /ry) £ (w/A)(rs? —a?)? +Ky (2.15)

where a, and K; have the same meaning as previously defined and, once
again, any combination of the signs is permissible. Equation (2.15) is the second
equation in Table 1,

Alternatively one can, of course, consider a light ray as being composed of
photons traveling with velocity ¢ = ¢, which, when substituted into equation
(2.14), again produces equation (2.15).

2.3. Spatial Geodesics. If we define a spatial geodesic as the shortest distance
between any two points in space, rather than in space-time, then we have the
additional condition that

os

7

Equation (2.16) may be written in the form 93/0f, = 0, which, when multi-
plied by 23, gives the condition that

o [{ds\?
a‘“{(&i) }‘0 @1

which, by equation (2.7), means that D = 0. Equations (2.8) and (2.12) can then
be solved to give u = ¢ /acw, which, when combined with equation (2.14) gives

0, = {cos Way fry) — (@2 /M) (P —aHV2) + K, (2.18)

(2.16)

for the equation of a spatial geodesic. K is, as before, a constant of integration.
This equation has previously been derived, but without a physical interpretation,
by Arzeliés (1966) and is listed as the third equation in Table 1. As the velocity
u = ¢*Jaw of the particle in the laboratory system is greater than the velocity of
light it is obvious that no real free particle can ever travel along a spatial geo-
desic in the frame S,.

3. The Instantaneous Lorentz Frames Approach

Before any analysis is performed it is instructive to examine exactly what is
meant by instantaneous frames of reference. For any body moving under an
acceleration it is always possible to find a frame moving with constant velocity
relative to, for example, the laboratory frame, in which the body is instan-
taneously at rest. If it is now assumed that the equations relating measurements
in the accelerating and nonaccelerating frames are the same at any instant of
time as those relating measurements in rectilinearly moving frames, then it is
possible to analyze events in the accelerating system. We should note that the
use of instantaneous frames automatically includes the clock hypothesis, i.e.,
the rate of a moving clock, in its own frame and as seen from any other frame,
is not affected by any acceleration imposed upon it.
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3.1. Geodesics. We adopt the definition of a geodesic in a rotating system
as being the path of a test particle across the system and commence our investi-
gations by interpreting this path according to observers who are rotating with
the system. This interpretation of the path depends upon the way in which a
rotating observer makes a measurement. We do not assume or derive, in this
section, any “transformation to a rotating system” by means of which the
equation of the path of a particle in the laboratory frame may be transformed
to the rotating system. Instead, we use the method of associating each point
in the rotating system, instantaneously, with a linearly moving Lorentz frame.

Consider a cylindrically symmetric system of an infinity of infinitely close
reference frames. At any instant we can let any of these frames be coincident
with linearly moving Lorentz frames and hence we may consider the infinity of
reference frames as representing an infinity of instantaneous Lorentz frames.
We now allow this system of reference frames to rotate about a point 0 with
angular velocity w as measured in the laboratory frame S. S has the usual
cylindrical coordinates, r, 6, z, £. The system is constrained to rotate in the
plane z = 0 with center of rotation, 0, at r = 0. We define the angular velocity,
w, by stating that if one of the instantaneous rotating frames is maintained at
a distance 7 from 0, as measured in the laboratory frame §, then the instan-
taneous linear velocity, v, of the rotating frame is wr,in S.

We shall also allow a system of cylindrical coordinates Sy(ry, 8, 1, #1) to
be synchronized to the rotating system such that r; =0 is located at 0. Hence,
all the rotating instantaneous frames will appear at rest in §;. We shall assume
that 8, = 0 coincides with 8 = 0 at time #; =¢ = 0 and that all the rotating
instantaneous frames are aligned such that at the instant of observation in S
their z axes all point in the same direction, their y axes are all in radial direc-
tions, and their x axes are all in tangential directions, as seen in 5;.

Consider now a particle that moves through this rotating system of Lorentz
frames. Let us assume that the path of this particle is a straight line of length ¢
in the laboratory system, S, and that its velocity in the laboratory system is u.
What is the equation of the path of the particle in the system $;?

As there is an infinity of Lorentz frames in the rotating system the particle
will pass through the origins of some of these frames. The angles between the
path of the particle and the y axis of each of these frames may be calculated
from the Lorentz transformations or, alternatively, from the aberration equa-
tions. Also, because these frames are at rest in the system S, these angles may
be measured by observers in the rotating system and a locus of the origins of
the frames through which the ray has passed may be produced for the coordi-
nate system Sj.

Figure 1 shows the situation as seen from the laboratory frame, 5.

Consider now a particle that passes through the origins of the instantaneous
frames Sy, and Sy(n+1)- The path of the particle, as seen in the frame S, is
depicted in Figure 2. From this figure it is evident that

ridb dr
tan é}ﬂ =——%r-ja COs =a;1 (3.1)
1 1
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Figure 1. The path, ABC, of a particle as seen in the laboratory frame S. 8§y, is 2 Lorentz
frame instantaneously at rest in S, and 8y, is a Lorentz frame instantaneously at rest in the
rotating system Sy. The origins of S, and Sy, are momentarily coincident at B as the
particle passes through B. The section of path BD is of length o.

If the particle starts in S at time ¢ = #; = 0 and at an angle § = ¢ =0, then,
for the nth instantaneous frame, Sy, in S} through which the particle passes,
it is always possible to associate a frame S, which is at rest in the laboratory
frame S, in standard configuration with Sy, and with origins coincident at
t1n = tn = 0 such that the equation of the path of the particle in S, is (as may

Figure 2. The path of the particle as seen in the frame St when the particle has passed
through the origins of 81, and Sy +1)-
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be seen from Figure 1) given by

aut U
Xn= n’ Yn =i“'(r2 _az)l/ztn (3.2
r r

The particle passes through the origins of S, and Sy, at ¢, = f1, = 0 and the
sign of x,, and y,, depends upon the direction in which the particle is traveling.
The path of the particle between the origins of the two frames S, and Sy, +1, as
measured in the laboratory frame S, will be a straight line of length do and will
subtend an angle df at the center of rotation of the system. From equation
(3.2), do = udt where dr is the time taken for the particle to travel from the
origin of S, to the origin of S, 4.

¢y, may now be calculated by using the Lorentz transformations (Einstein,
1905):

_ Xp — vly _ _
Xip = BT Vin =Yn, Zin =Zp (33)
from which
au —~r
tan gy, = 2 =+ clau —rv) (34)

AVin u(r2 _ 02)1/2(02 _ 02)1/2

1et us now consider two of the instantaneous rotating frames, Sy, and Sy,
located on the same radius in S} at radial distances ry, and ryp. It is possible to
associate frames S, and S}, at radial distances r, and 75 in the frame S instan-
taneously with the frames S, and Sy, It is also possible to measure the distance
between Sy, and Sy in Sy or the distance between S, and S, in S. As the rela-
tive motion of S, to 8,1 or Sp1, and the relative motion of Sy to S,q or Sy, is at
right angles to the direction of ryg, ryp, 4, and rp, observers in each of the frames
will agree that ry, = r, and ry, =75, which may be generalized to give

r{=r (3.5)
Combining equations (3.1) and {3.4) and remembering that v = rw gives
clagu — wri®) dr

3
url(’.12 . d12)1/2(6‘2 _ r12w2)1/2

d@l =+

e f(u — alw)z + wz(ﬁz - 012)(1 - 34'4’/(’,2)]1/2(}1’i

dO'l
u(r12 _ a12)1/2(6’2 _ r12w2)1/2

(3.6)

in which u will, in general, be a function of r. In the special case that u isa
constant the first of equations (3.6) may be integrated directly to yield the
fourth equation of Table 1.

Let us also examine two of the instantaneous rotating frames, S; 4 and Syg,
located at equal radial distances from O but on different radii, in ;. If the
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angle df, between these two radii is very small then S; 4 and S; 5 become
virtually the same frame since their velocities relative to the laboratory frame
become equal in magnitude and direction. If an instantaneous Lorentz frame
in §, at a distance r = ry from 0, is associated with the frames Sy 4 and Sy,
then, since dx = rd@ and dx,; = r;d6,, equation (3.3) gives

do — wdt

()7 G0

.=
where v is the relative velocity of 8y 4 or Syg to S4 or Sg. Ii is interesting to
compare the differential equations given in equation (3.6) above with those
obtained using the Galilean rotational transformation, This transformation can
be used to relate a frame Sy(ry, 85, 25, 1) to the laboratory frame S by using
the transformations of equation (2.2). The system S, corresponds to a co-
ordinate system, with origin located at 0, which rotates with respect to the
laboratory frame with an angular velocity w, but has the same angular measure
as the laboratory frame. It is the frame obtained by making a Galilean rota-
tion of § about itself. Combining equations (2.2),(3.5), and (3.7) we find that
dry =dr
e (3.8)
dé,

do, =

Now, combining equations (3.6) and (3.8) and remembering that v = re,
we obtain

0, =+ (@ — wr22)dr2
dby =z 2 28172
uryry” —a;")
_n [ — a300)% + W (% — ) (1 — u¥cH)] Y2 dr, (39

dOZ
u(r22 - a22)1f2(02 _ r22w2)1/2

where do, is an element of the path of the particle in S, and is defined by

(72d92)2

2. NaTTE
o) (1 — w?re?)

+ (dr2)2

and u will, in general, be a function of 7. In the special case that « is a constant,
the first of equations (3.9) may be integrated directly to yield the first equa-
tion of Table 1.

3.2. Null Geodesics. In this section a null geodesic in a rotating system is
defined as the path of a light ray as it crosses the system. The path and its
length are given in differential form, in S;, by equation (3.6) after letting
u = ¢, the velocity of light. Making this substitution and integrating between
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the limits r; =#; and ry = a; to obtain the locus, and length, of the path of the
ray in the system S; we find that

8, =% cos™ e+ o’ (3.10a)
rlc+aw)

and

(w/c)(rf—af)“} (3.10b)

1 L
oy == —Q—)(c ~ ayw)sin™ {(1 SO
in which the sign of «w may be either positive or negative and the sign before
equation (3.10b) is chosen such that g, is positive. Equation (3.10a), which is
listed as the fifth equation in Table 1, may be seen to be the equation of the
curve HBD in Figure 3 and o, is the length of the circular are BD. From Figure
3 it is evident that

o =icos_1( i od ) (.11a)
cE way
and
ctmw) 4 ({mw
0y = sin (3.11b)
w ctaqw

which is identical to equation (8) of Ashworth and Jennison (1976) and
represents the arc of a circle of radius § [¢/w * ;] with center §[¢/cw 7 a;]
from 0, in which the sign depends upon the sign of w.

Equations (3.11a) and (3.11b) describe the ray path which a rotating observer
would derive by measuring the aberration angle of the light as it passed through
his or her own infinitely small locality. An infinite number of such contiguous
measurements made at all points along the light path would give, when drawn by
the observer on a piece of paper in his or her own locality, i.e., when drawn in the
local Euclidean space, the light path as defined by equations (3.11a), (3.11b).

The path of the same ray of light in the frame S, is obtained by setting
u = ¢ in equation (3.9), which may then be integrated between the limits r, =7,
and 7, = a5 to obtain the locus, and length, of the path of the ray in the system
S5, thus giving

0, =*cos™ (?)i’ %} (r? — a,?)1"? (3.12a)
2

and

0 =%(c — aye) sin? { (3.12b)
@

(w/c)(ry? — a22)m}

(1 _ w2322/02)1/2
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Figure 3. The geometry of a ray path in the rotating system Sj. The ray path follows the
circular arc HBD in the upper diagram and the circular arc DBH in the lower diagram.

in which the sign of w may be either positive or negative and the sign before
equation (3.12b) is chosen such that o, is positive.

Equation (3.12a) is precisely the same equation as may be obtained by
transforming the equation of the path of a light ray in § directly to S, by the
Galilean transformation of equation (2.2): From Figure 1, assuming a
constant velocity u for the particle, we have

rcos(f — ¥y=+*a
rsin(f — ) =tut

which, together with equation (2.2), gives

N ANES
8, = *cos I(3) 22 )+
¥ U
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which becomes identical to equation (3.12a) if we specify u = ¢ for a light ray
and 8, =0 when r, = a,. Equation (3.12a) has previously been derived by
Arzeliés (1966) and is equivalent to equation (2.15), which we derived in
Section 2.2.

It is therefore possible to describe the path of a light ray as the arcof a
circle in the system S1, or as an Archimedean spiral in system S,, where Sy
and §, are related by equation (3.8). Both descriptions are equally “correct”,
and the choice of which system should be used is arbitrary although in prac-
tice the system into which experimental measurements could most easily be
substituted would always be used. If measurements were being made by an
observer as he or she crossed the rotating system, then §; would be used, but
if measurements were made by an observer situated at the center of the
rotating system then S, would be used.

3.3. Spatial Geodesics. We define a spatial geodesic as the shortest distance
between two points in the rotating system. This is the shortest distance,
measured piecemeal, according to an observer who moves between the two
points in the rotating system. There can be only one such spatial geodesic link-
ing any two points, and all spatial geodesics must be independent of the direc-
tion of rotation of the system.

In common with the metric approach given in Section 2.3 we shall consider
a spatial geodesic to be defined as the path, in the rotating system, of a test
particle that is traveling at a constant velocity in the laboratory frame. Since 2
spatial geodesic has a minimal path length in space it will correspond to the path
traveled by a particle that is moving at infinite velocity as measured in the
rotating system. Using the velocity addition formula it can readily be shown
that the velocity, u;, of a particle as measured in the system S, is related to
the velocity, u, of the same particle measured in the laboratory system S by

_ [(62 _ walu)z _ (02 _ HZ)(CZ - w2r12)} 1/2

e(1l — wayufc?)

Uy (3.13)

uy will thus be a maximum, i.e., equal to infinity, when u = ¢%a;cw. The velocity
in the laboratory system of the test particle whose paths determine the spatial
geodesics of the rotating system must therefore be given by

u=cHay 0 (3.14)

[Tt is worth noting that the equation of a spatial geodesic can also be obtained
by letting

u=wr} sc¥ay, A2¢* ~ w?ri 2) (3.15)

but in this case the spatial geodesic is not the path of a single particle traveling
with constant velocity in the laboratory frame.]

The fact that equation (3.14) requires a particle velocity that is greater than
the velocity of light does not invalidate the procedure, as no real particle is
required to travel along a spatial geodesic path—it is simply the path of a hypo-
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thetical test particle. Letting (doy)y=c2 Ja1 ™= dly enables equation (3.6) to be
integrated between the limits ry =7, and r; =4, to give

_ 4| @1 — 120V g wl 4 Q — it w¥c?)M?
0, =%{cos — cos

ri(l —a?w?c?)? 4 (1 —a2w?[ehH1/?
(3.16a)
and
1= (r? — )1 — g W2 (3.16b)

Equation (3.16a), which is the sixth equation listed in Table 1, is the equa-
tion of the locus of a spatial geodesic in ;. Equation (3.16b), which has been
obtained previously by Ashworth and Jennison (1976), gives the length of a
spatial geodesic in §j.

Letting (d0p)u=c2/q, = dl, enables equation (3.9) to be integrated between
7, =ryand vy =a,,

2
92 =tk {COS-}' (a——:z) - a-—giza—-(rzz - a22)1/2} (3172)
ry C
and
12 = (7'22 - {122)1/2 (1 - a22w2/c2)1/2 (3.17b)

Equation (3.172) is the equation of the locus of a spatial geodesic in Sy; it has
previously been derived by Arzeliés (1966) and is equivalent to equation (2.18),
which we derived in Section 2.3.

An alternative method of deriving equations (3.16) and (3.17) is to use the
equations previously derived to describe the path of a light ray across a rotating
system, together with simple geometrical considerations.

Figure 4 is a representation of the path HBD of the light ray in the frame
S;. If we let an observer at point B compute the shortest distance to D, accord-

Figure 4. Construction used in Section 3.3 to describe an infinitesimal spatial geodesic,
BB
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ing to measurements made in the system §;, then this shortest distance will be
along the straight line BD. If this same observer now moves an infinitesimal
distance BB’ along the line BD then a different light ray H'B'D' will pass
through his new position and the shortest distance to D’ lies along the straight
line B'D’. Continuing this process the observer follows the path of a spatial geo-
desic which has-a distance of closest approach to 0 of g; and the path may be
computed from the geometry of Figure 4 as follows:

3_‘3—“ (3.18)

" dly

and

2 +r 2_,2
Cosﬁ:T_l_____l___ai (3.19)
271m1

But, also from the geometry of Figure 4,

_ (712 _ [112)1/2(0 _ alw)1/2
1= 172

(C' +a1w
giving, by equation (3.19),
2 —a2)V2%¢

cosf =
(2 = 22?2,

Hence, from equation (3.18),

ay(c?® —r?w®Y%dr, ric? —a?w®)Vdr,

d61 = 3 dll =
2 _a)? PN

= (3.20)

Equations (3.20) integrate to give equations (3.16) which describe the path of a
spatial geodesic in ;. The equations of the spatial geodesic in the system S,
may be found by using equations (3.8) and (3.20) giving

ay(c? — r?w?) dr, r(c® — a2 w2 dr,

12 =
) :
PO T2

doy =
e(ry

(321)

7’26‘( L.

where dI, is an element of the s %)atlal geodesic in S, defined by (dl,)? =
(r2d0,)*/(1 — w?r,¥c®) +(dry)? Equations (3.21) integrate to give equations
(3.17), which describe the path of a spatial geodesic in S,.

We submit that, unlike Arzeliés, who used a purely mathematical approach
towards spatial geodesics, the treatment we have presented above puts spatial
geodesics on a firm physical basis by explaining them as explicit geometrical
entities.
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4. Conclusions

We have derived the equations describing geodesics, null geodesics, and
spatial geodesics in the systems S; and S, of a rotating system. These deriva-
tions can first be made in either of the two systems and then transformed to
the other system if this is desired. The resulting equations are summarized in
Table 1. In order to simplify the table the equations for 8, 5 = f(ry, 2), but
not the equations for 01,3 = f(ry, 2), are presented.

The work in the paper shows that the systems S} and .S, are equally valid
for describing events in a rotating system and also shows that there is a simple
relationship between S; and S,. It is important to realize, however, that S,,
which is obtained by a Galilean transformation from the laboratory frame S,
is applicable to an observer at the center of rotation of the system who is
spinning in synchronism with the system. The frame §; corresponds to the
interpretation of events made by an observer who is in synchronous rotation
with the system and who actually moves through it, making measurements as
he or she goes. The question of whether to use Sy or S, to analyze any parti-
cular problem in a rotating system is arbitrary but will, in a practical case,
depend on the position of the observer within the rotating system. For example,
consider the path of a ray of light that travels from an observer at the center
of the system to an observer in synchronous rotation at the circumference of
the system. Both observers will, of course, use their own local coordinate
systerns for making measurements. A Lorentz frame instantaneously at rest
with the circumferential observer will provide a simple way of calculating, for
example, the aberration angle of the incoming ray as seen by this observer. It
would therefore be natural for the observer to use the system of instantaneous
frames S; to describe events. However, the observer fixed at the center of the
disk would tend to use S, since he or she would interpret the path of the ray as
an Archimedean spiral. So, although the choice of S| or S, is entirely arbitrary
for a theoretical analysis of any problem in a rotating system, in practice the
choice is likely to depend upon the position of the observer.

We are not suggesting that the approach to measurements in rotating systems
as used in this paper is necessarily better than the ideal general relativity
‘apptoach where a metric applicable to an observer on a rotating disk is derived
through Einstein’s field equations. However, a universally agreed metric of this
type does not, as yet, exist, and it is necessary to find some other method for
investigating measurements in rotating systems. We submit that the method of
instantaneous Lorentz frames provides a very reasonable method of interpret-
ing such measurements and we hope that this paper has clarified the relationship
between the commonly used frame S, and the frame §; which results when
instantaneous Lorentz transformations are applied to rotating systems. In order
to emphasize the fact that different methods of analysis produce the same
answers, we have provided a table which clearly shows the different methods
that may be used to derive identical equations.
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